(1)a=2时,
f(x)=(x²+x+2)/(x+1)
→f(x)=(x+1)+[2/(x+1)]-1
≥2√[(x+1)·2/(x+1)]-1
=2√2-1.
故所求最小值为:
f(x)|min=2√2-1,
此时,x+1=2/(x+1),
即x=√2-1 (只取正值)
(2)当0
(1)a=2时,
f(x)=(x²+x+2)/(x+1)
→f(x)=(x+1)+[2/(x+1)]-1
≥2√[(x+1)·2/(x+1)]-1
=2√2-1.
故所求最小值为:
f(x)|min=2√2-1,
此时,x+1=2/(x+1),
即x=√2-1 (只取正值)
(2)当0