∵tan(π/4 α)=(tanπ/4 tanα)/(1-tanπ/4*tanα)=(1 tanα)/(1-tanα)=-1/2
∴tanα=-3
∴sinα/cosα=tanα=-3,即sinα=-3cosα
代入sin²α cos²α=1,解得sin²α=9/10,cos²α=1/10
又∵sinα/cosα=-3
∵tan(π/4 α)=(tanπ/4 tanα)/(1-tanπ/4*tanα)=(1 tanα)/(1-tanα)=-1/2
∴tanα=-3
∴sinα/cosα=tanα=-3,即sinα=-3cosα
代入sin²α cos²α=1,解得sin²α=9/10,cos²α=1/10
又∵sinα/cosα=-3