∫_0^1▒√(2&(1-x)/(1+x))dx即求根号下(1-x)/(1+x)从0到1的积分,并写出具体过

1个回答

  • 令√[(1-x)/(1+x)]=t

    (1-x)/(1+x)=t^2

    1-x=t^2+t^2x

    (1+t^2)x=1-t^2

    x=(1-t^2)/(1+t^2)

    dx=[(1-t^2)'(1+t^2)-(1-t^2)(1+t^2)']/(1+t^2)^2 dt

    =[-2t(1+t^2)-2t(1-t^2)]/(1+t^2)^2 dt

    =-4tdt/(1+t^2)^2

    =-2d(1+t^2)/(1+t^2)^2

    =2d[1/(1+t^2)]

    当x=0时 t=1

    当x=1时 t=0

    ∴原化化为

    ∫(1->0)t2d[1/(1+t^2)]

    =2t/(1+t^2)|(1->0)-2∫(1->0)1/(1+t^2)*dt

    =2t/(1+t^2)|(1->0)-2arctant|(1->0)

    =2(0-1/2)-2(0-π/4)

    =π/2-1