证明:由a>0,b>0,ln x是增函数,要证:a^a b^b>= a^b b^a,
即证:aln a + bln b>= aln b + bln a
即证:a(ln a - ln b)+b(ln b-ln a)>=0
即证:(a-b)(ln a -ln b)>=0.
由于,ln x是增函数,因此,a-b与lna -lnb符号相同.
则(a-b)(ln a - ln b)>=0成立.
于是:原不等式成立.
证明:由a>0,b>0,ln x是增函数,要证:a^a b^b>= a^b b^a,
即证:aln a + bln b>= aln b + bln a
即证:a(ln a - ln b)+b(ln b-ln a)>=0
即证:(a-b)(ln a -ln b)>=0.
由于,ln x是增函数,因此,a-b与lna -lnb符号相同.
则(a-b)(ln a - ln b)>=0成立.
于是:原不等式成立.