∵π/2<b<a<3π/4 ∴π<a+b<3π/2 0<a-b<π/4
∵cos(a-b) =12/13 sin(a+b)=﹣3/5
∴sin(a-b)=5/13 cos(a+b)=﹣4/5
∴cos2a=cos[(a+b)+(a-b)]=cos(a+b)cos(a-b)-sin(a+b)sin(a-b)
=(﹣4/5)×12/13-(﹣3/5)×5/13
=﹣33/65
∵π/2<b<a<3π/4 ∴π<a+b<3π/2 0<a-b<π/4
∵cos(a-b) =12/13 sin(a+b)=﹣3/5
∴sin(a-b)=5/13 cos(a+b)=﹣4/5
∴cos2a=cos[(a+b)+(a-b)]=cos(a+b)cos(a-b)-sin(a+b)sin(a-b)
=(﹣4/5)×12/13-(﹣3/5)×5/13
=﹣33/65