函数求导数已知f(x)与g(x)均为可导函数,如果f(x)=g(t+x),则f'(x)=请写过程!
1个回答
f'(x)=g'(t+x)
t是常量,f'(x)=(t+x)'*g'(t+x)=g'(t+x)
(t+x)的导数是1,懂吗?这是复合函数,一般都要这样解
相关问题
设f(x)、g(x)是R上的可导函数,f'(x)、g'(x)分别为f(x),g(x)的导函数,且f'(x)g(x)+f(
设函数f(x)和g(x)均可导,且f'(x)
已知函数f(x),g(x)是定义在R上可导函数,满足f′(x)•g(x)-f(x)•g′(x)<0,且f(x)>0,g(
已知函数f(x),g(x)是定义在R上可导函数,满足f′(x)•g(x)-f(x)•g′(x)<0,且f(x)>0,g(
设y=f(u) ,u=g(x)均可导,则复合函数y=f(g(x))可导.【则dy/dx=f’(u)g’(x)为什么?】
已知函数f(x) g(x)均为闭区间a,b上可导函数,且f'(x)>g'(x),f(a)=g(a) 求当闭区间a,b时
证明如果两个可导函数f(x)与g(x),满足f(0)=0,g(x)=0且它们导数存在,g(x)不为0那么f(x)/g
f(x)导数<g(x)导数,则f(x)<g(x)?(可导的情况下)
已知f(x)与g(x)是定义在R上的两个可导函数,若f(x)与g(x)满足f′(x)=g′(x),则( )
已知f(x)与g(x)是定义在R上的两个可导函数,若f(x)与g(x)满足f′(x)=g′(x),则( )