1.求不定积分∫(lnx/√1+x)dx

1个回答

  • 1)令1+x = t²

    则dx = 2tdt

    ∫lnx/√(1+x) dx

    =∫ln(t²-1)*2tdt/t

    =2∫[ln(t+1) + ln(t-1)]dt

    =2∫ln(t+1)d(t+1) + 2∫ln(t-1)d(t-1)

    =2[(t+1)ln(t+1) - (t+1) + (t-1)ln(t-1) - (t-1)] + C

    =2(t+1)ln(t+1) + 2(t-1)ln(t-1) - 4t + C

    2)对极限后面的式子求对数,记为lnA

    lnA = -x²ln∫e^t² dt

    当x→∞时lnA→0

    则A→1

    原式=1