已知函数 f(x)=(1+ 1 tanx )si n 2 x+msin(x+ π 4 )sin(x- π 4 ) .

1个回答

  • (1)当m=0时,f(x)=(1+

    cosx

    sinx )sin 2x=sin 2x+sinxcosx=

    1-cos2x+sin2x

    2 =

    1

    2 [

    2 sin(2x-

    π

    4 )+1]

    由已知x∈ (

    π

    8 ,

    4 ) ,f(x)的值域为(0,

    1+

    2

    2 )

    (2)∵ f(x)=(1+

    1

    tanx )si n 2 x+msin(x+

    π

    4 )sin(x-

    π

    4 )

    =sin 2x+sinxcosx+

    m(cos

    π

    2 -cos2x)

    2

    =

    1-cos2x

    2 +

    sin2x

    2 -

    mcos2x

    2

    =

    1

    2 [sin2x-(1+m)cos2x]+

    1

    2

    ∵ f(α)=

    6

    5 ,

    ∴f(α)=

    1

    2 [sin2α-(1+m)cos2α]+

    1

    2 =

    6

    5 ①

    当tanα=2,得:sin2a=

    2sinαcosα

    si n 2 α+co s 2 α =

    2tanα

    1+ta n 2 α =

    4

    5 ,cos2α=-

    3

    5

    代入①式,解得m=-

    7

    5 .