(1)当m=0时,f(x)=(1+
cosx
sinx )sin 2x=sin 2x+sinxcosx=
1-cos2x+sin2x
2 =
1
2 [
2 sin(2x-
π
4 )+1]
由已知x∈ (
π
8 ,
3π
4 ) ,f(x)的值域为(0,
1+
2
2 )
(2)∵ f(x)=(1+
1
tanx )si n 2 x+msin(x+
π
4 )sin(x-
π
4 )
=sin 2x+sinxcosx+
m(cos
π
2 -cos2x)
2
=
1-cos2x
2 +
sin2x
2 -
mcos2x
2
=
1
2 [sin2x-(1+m)cos2x]+
1
2
∵ f(α)=
6
5 ,
∴f(α)=
1
2 [sin2α-(1+m)cos2α]+
1
2 =
6
5 ①
当tanα=2,得:sin2a=
2sinαcosα
si n 2 α+co s 2 α =
2tanα
1+ta n 2 α =
4
5 ,cos2α=-
3
5
代入①式,解得m=-
7
5 .