设X1,X2是方程x2-xsin(π/5)+cos(π/5)=0的两根,则arctanx1+arctanx2的值是?
2个回答
两根之和是x1+x2=sin(π/5),x1x2=cos(π/5)
tan[arctanx1+arctanx2]=(x1+x2)/(1-x1x2)=sin(π/5)/[1-cos(π/5)]
相关问题
设X1、X2是方程X^2-Xsin(π/5)+cos(4π/5)=0的两根,求arctanx1+arctanx2的值
若x1,x2是方程x^2-xsinπ/5+cosπ/5=0的两个根,求证arctanx1+arctanx2=2π/5
求limx→∞(π/2-arctanx)/0.5x?
证明 1 当x>0 arctanx+1/x>π/2
limx→+∞(π/2-arctanx)^1/x
当x>0时,证明:arctanx+1/x>π/2,
lim (π-2arctanx) / In(1+ 1/x ) x→∞
已找方程x^2+mx+n=0有两个实根x1,x2,a=arctanx1,β=arctanx2
计算lim(π/2-arctanx)/ln(1+1/x) x→+∞
lim(x→1)(arctanx+πx/4)/√(x^2+lnx)