(1)Sn=2An-4……(1),n=1代入,得:A1=4,
Sn+1=(2An+1)-4……(2),
(2)-(1),得:An+1=2An+1-2An,An+1=2An,
数列{An}是首项为4,公比为2的等比数列,An=2^(n+1)
(2)Bn+1=An+2Bn=2Bn+2^(n+1)
Bn+1/2^(n+1)=(Bn/2^n)+1
即(Bn)/2^n是公差为1的等差数列,首项为B1/2^1=2/2=1,通项 (Bn)/2^n=n
(3)(Bn)/2^n=n,Bn=n*2^n
Tn=1*2^1+2*2^2+……+n*2^n
2Tn=1*2^2+2*2^3+……+(n-1)*2^n+n*2^(n+1)
相减得,-Tn=2^1+2^2+2^3+……+2^n-n*2^(n+1)
=2^(n+1)-2-n*2^(n+1)
=(1-n)*2^(n+1)-2
Tn=(n-1)*2^(n+1)+2