设M(y0^2/(2p),y0),
对y^2=2px两边对x求导得
2yy'=2p,得y'=p/y
故过点M的切线斜率为p/y0
要使M到定点P(p,p)的距离最短,需MP垂直于过点M的切线.也即
(y0-p)/[y0^2/(2p)-p]=-1/(p/y0)
化简得y0^3=2p^3
于是得y0=2^(1/3)*p
定点M为M(2^(-1/3)*p,2^(1/3)*p)
设M(y0^2/(2p),y0),
对y^2=2px两边对x求导得
2yy'=2p,得y'=p/y
故过点M的切线斜率为p/y0
要使M到定点P(p,p)的距离最短,需MP垂直于过点M的切线.也即
(y0-p)/[y0^2/(2p)-p]=-1/(p/y0)
化简得y0^3=2p^3
于是得y0=2^(1/3)*p
定点M为M(2^(-1/3)*p,2^(1/3)*p)