正弦定理:a/sinA=b/sinB=c/sinC=2R R为外接圆半径
过B点和圆心O作一直径,直径另一端点记作A',因为圆周角相等,故A'=A,而三角形A'BC为直角三角形,则外接圆直径A'B=2R=a/sinA'=a/sinA,同理得正弦定理.
正弦定理:a/sinA=b/sinB=c/sinC=2R R为外接圆半径
过B点和圆心O作一直径,直径另一端点记作A',因为圆周角相等,故A'=A,而三角形A'BC为直角三角形,则外接圆直径A'B=2R=a/sinA'=a/sinA,同理得正弦定理.