(x2+1)/(x1+1)+(x1+1)/(x2+1)
=(x2+x1x2)/(x1+x1x2)+(x1+x1x2)/(x2+x1x2)
=x2(x1+x2)/[x1(x1+x2)]+x1(x1+x2)/[x2(x1+x2)]
=x2/x1+x1/x2
=(x2^+x1^2)/(x1x2)
=[(x1+x2)^2-2x1x2]/(x1x2)
=9-2
=7
(x2+1)/(x1+1)+(x1+1)/(x2+1)
=(x2+x1x2)/(x1+x1x2)+(x1+x1x2)/(x2+x1x2)
=x2(x1+x2)/[x1(x1+x2)]+x1(x1+x2)/[x2(x1+x2)]
=x2/x1+x1/x2
=(x2^+x1^2)/(x1x2)
=[(x1+x2)^2-2x1x2]/(x1x2)
=9-2
=7