f(x)=lg[(m-1)x²-mx+1]
f(x)=f(-x)
则lg[(m-1)x²-mx+1]=lg[(m-1)x²+mx+1]
(m-1)x²-mx+1=(m-1)x²+mx+1
2mx=0
m=0
所以f(x)=lg(1-x²)
1-x²的单调区间是(负无穷,0),单调增,则f(x)增
1-x²的单调区间是【0,正无穷),单调减,则f(x)减
f(x)=lg[(m-1)x²-mx+1]
f(x)=f(-x)
则lg[(m-1)x²-mx+1]=lg[(m-1)x²+mx+1]
(m-1)x²-mx+1=(m-1)x²+mx+1
2mx=0
m=0
所以f(x)=lg(1-x²)
1-x²的单调区间是(负无穷,0),单调增,则f(x)增
1-x²的单调区间是【0,正无穷),单调减,则f(x)减