B²=AC
所以2AC-B²=B²
B²=AC
B^4=A²C²
所以2A²C²-B^2=B^4
(A+B+C)(A-B+C)(A²-B²+C²)
=[(A+C)+B][(A+C)-B](A²-B²+C²)
=[(A+C)²-B²](A²-B²+C²)
=(A²+C²+2AC-B²)(A²-B²+C²)
=(A²+B²+C²)(A²-B²+C²)
=[(A²+C²)+B²][(A²+C²)+B²]
=(A²+C²)²-B^4
=A^4+C^4+2A²C²-B^4
=A^4+C^4+B^4
B²=AC
所以2AC-B²=B²
B²=AC
B^4=A²C²
所以2A²C²-B^2=B^4
(A+B+C)(A-B+C)(A²-B²+C²)
=[(A+C)+B][(A+C)-B](A²-B²+C²)
=[(A+C)²-B²](A²-B²+C²)
=(A²+C²+2AC-B²)(A²-B²+C²)
=(A²+B²+C²)(A²-B²+C²)
=[(A²+C²)+B²][(A²+C²)+B²]
=(A²+C²)²-B^4
=A^4+C^4+2A²C²-B^4
=A^4+C^4+B^4