设O使锐角三角形ABC的外心,若∠C=75°,且△AOB,△BOC,△COA的面积满足S△AOB+S△BOC=根号三S△

2个回答

  • 由题意得∠B=180°-∠A-∠C=105°-∠A

    设⊙O为△ABC外接圆

    令⊙O半径为r,则OA=OB=OC=r

    ∠AOB=2∠C=150°,∠BOC=2∠A,∠COA=2∠B (圆心角等于二倍的圆周角)

    S△AOB=(1/2)(OA x OB x Sin∠AOB)=(1/4)(r^2)

    S△BOC=(1/2)(OB x OC x Sin∠BOC)=(1/2)(r^2)Sin(2∠A)

    S△COA=(1/2)(OC x OA x Sin∠COA)=(1/2)(r^2)Sin(2∠B)

    则(1/4)(r^2)+(1/2)(r^2)Sin(2∠A)=√3 x (1/2)(r^2)Sin(2∠B)

    化简得1+2Sin2A=2√3Sin2B=2√3Sin(210°-2∠A)

    =2√3(Sin210°Cos2A-Cos210°Sin2A)

    =2√3(Sin210°Cos2A-Cos210°Sin2A)

    =2√3(√3/2 x Sin2A - 1/2 x Cos2A)

    =3Sin2A-√3Cos2A

    即1+√3Cos2A=Sin2A

    两边平方1+2√3Cos2A+3(Cos2A)^2=(Sin2A)^2=1-(Cos2A)^2

    2(Cos2A)^2+√3Cos2A=0

    (Cos2A)(√3+2Cos2A)=0

    Cos2A=0或者-√3/2

    “△ABC为锐角三角形”可得0°