a^x = b^y = 3 ,得
x=log_a(3)=lg3/lga ,y=log_b(3)=lg3/lgb
∴ 1/x+1/y = lga/lg3 + lgb/lg3
= (lga+lgb)/lg3
= lg(ab)/lg3
≤ [lg(a+b)²/4] /lg3
= [lg(2√3)²/4] / lg3
= lg3/lg3
=1
当且仅当 x=y=2时等号成立.
a^x = b^y = 3 ,得
x=log_a(3)=lg3/lga ,y=log_b(3)=lg3/lgb
∴ 1/x+1/y = lga/lg3 + lgb/lg3
= (lga+lgb)/lg3
= lg(ab)/lg3
≤ [lg(a+b)²/4] /lg3
= [lg(2√3)²/4] / lg3
= lg3/lg3
=1
当且仅当 x=y=2时等号成立.