三角形面积 S = (1/2)*a*b*sinC = 1/4
根据正弦定理,c / sinC = 2r = 2 (r为外接圆半径)
故:sinC = c/2r = c/2
所以:S = abc/4 = 1/4
即:abc = 1
所以:
1/a + 1/b + 1/c
= (1/√a)^2 + (1/√b)^2 + (1/√c)^2
>= (1/√a)(1/√b) + (1/√b)(1/√c) + (1/√a)(1/√c) ……(注:x^2+y^2+z^2>=xy+yz+xz)
= 1/√(ab) + 1/√(bc) + 1/√(ac)
= √(abc)/√(ab) + √(abc)/√(bc) + √(abc)/√(ac) ……(注:√(abc)=1)
= √a + √b + √c
取等号的条件是 a = b = c =1
但当a = b = c = 1 时,ABC的外接圆半径不等于1
所以不能取等号
所以:√a+√b+√c