证明:设N(m,n),则M(m,-n),又A(3,0)
∴AN:y=n/(m-3)x-3n/(m-3) ①
又x2+4y2=1 ②
由①和②可得:
E(12n2-√[144n4+(m2-6m+9+4n2)(m-3)2],n/(m-3)(12n2-√[144n4+(m2-6m+9+4n2)(m-3)2]-3) )
设s= √[144n4+(m2-6m+9+4n2)(m-3)2] ③
则E(12n2-s,n/(m-3)(12n2-s-3) )
∴ME:y=n(12n2-s+m-6)/[(12n2-s-m)(m-3)]x-mn(12n2-s+m-6) /[(12n2-s-m)(m-3)]-n ④
令y=0,由②、③和④可得:
x=1/3
∴ME与x轴相交于定点(1/3,0)
字母后面有数字的表示是指数,不好标.这种题目的原理很简单,就是计算很复杂.