已知圆C:x^2+y^2-2dx+4cy4=0的圆心在x-y+1=0上,且圆C经过点(1,5),动直线l:y=-x+m与

1个回答

  • x^2+y^2-2dx+4cy-4=0

    (x-d)^2+(y+2c)^2=d^2+4c^2+4

    圆心:C(d,-2c)

    圆心在x-y+1=0上

    d+2c+1=0

    -2c=d+1

    C(d,d+1),(x-d)^2+(y-d-1)^2=2d^2+2d+5

    圆C经过点(1,5)

    (1-d)^2+(4-d)^2=2d^2+2d+5

    d=1

    圆C:(x-1)^2+(y-2)^2=9

    动直线l:y=-x+m与圆C交於A,B两点

    (x-1)^2+(-x+m-2)^2=9

    2x^2+(2-2m)x+m^2-4m-4=0

    AB中点:xp=(x1+x2)/2=(m-1)/2,yp=(y1+y2)/2=(-x1+m-x2+m)/2=(m+1)/2

    |AB|=√[(x1-x2)^2+(y1-y2)^2]

    =√[(x1-x2)^2+(-x1+m+x2-m)^2]

    =√[2(x1-x2)^2]

    =√2*√[(x1+x2)^2-4x1x2]

    =√2*√[(m-1)^2-2m^2+8m+8]

    =√2*√(-m^2+6m+9)

    所以圆P:[x-(m-1)/2]^2+[y-(m+1)/2]^2=(-m^2+6m+9)/2

    假设圆P过原点,那么(m-1)^2/4+(m+1)^2/4=(-m^2+6m+9)/2

    m=4 或者 m=-1

    m=4时

    圆P:(x-3/2)^2+(y-5/2)^2=17/2

    L:y=-x+4

    m=-1时

    圆P:(x+1)^2+y^2=1

    L:y=-x-1