1、sin(α-π/3)=(4-3√3)/10
2、tanβ= -1/3
∵α∈(0,π/2)
cosα=3/5
∴sinβ=4/5
sin(α-π/3)=sinαcosπ/3 - cosαsinπ/3
=4/5*1/2 - 3/5*√3/2
=(4-3√3)/10
∵cosα=3/5
∴tanα=4/3
∵tan(α-β)= -3
∴tanβ=tan[α-(α-β)]
=[tanα+tan(α-β)]/[1-tanα*tan(α-β)]
=[4/3+(-3)]/[1-4/3*(-3)]
=[-5/3]/[1+4]
= -1/3