(1)a(n+1) = S(n+1)-Sn = an+ 1/2^(n-2) - a(n+1) - 1/2^(n-1)
= an - a(n+1) - 1/2^(n-1)
∴2a(n+1) = an - 1/2^(n-1) ------①
(2)①式两边同时乘以2^(n-1) ,则得:
2^n a(n+1) = 2^(n-1) an -1
即数列{2^(n-1) an}是以 2^(1-1) a1 = 1为首项,-1为公差的等差数列,
故 2^(n-1) an = 1-(n-1) = 2-n
∴an的通项:
an = (2-n)/2^(n-1)