令f(x)=t=(x-1)/(2x²-5x+5),则
→2tx²-(5t+1)x+(5t+1)=0.
判别式不小于0,故
(5t+1)²-8t(5t+1)≥0
→(5t+1)(3t-1)≤0
∴-1/5≤t≤1/3.
故函数f(x)的定义域为: [-1/5,1/3].
令f(x)=t=(x-1)/(2x²-5x+5),则
→2tx²-(5t+1)x+(5t+1)=0.
判别式不小于0,故
(5t+1)²-8t(5t+1)≥0
→(5t+1)(3t-1)≤0
∴-1/5≤t≤1/3.
故函数f(x)的定义域为: [-1/5,1/3].