点M(2,1)在抛物线y=ax^2+2上
1 = a*2^2 + 2
a = -1/4
y = -x^2 /4 + 2
设 A B 坐标分别为(a,a'), (b,b')
a' = -a^2/4 + 2
b' = -b^2/4 + 2
MA 斜率
k1 = (1 - a')/(2-a) = (a^2/4 -1)/(2-a) = (a-2)(a+2)/[4(2-a)]
MB斜率
K2 = (1 - b')/(2-b) = (b-2)(b+2)/[4(2-b)]
直线MA、MB的倾斜角互补,所以倾斜角的正切互为相反数
k1 + k2 = 0
AB 斜率为
k = (b' -a')/(b-a)
= (-b^2/4 + a^2/4)/(b-a)
= (a+b)(a-b)/[4(b-a)]
抛物线上任何两点的横坐标都是相异的,b-a, 2-a, 2-b 均不为0.
k1 = -(a+2)/4
k2 = -(b+2)/4
k = (a+b)/4
k1 + k2 =0
(a+2 + b+2)/4 = 0
a + b = 4
k = (a+b)/4 = 1
因此 直线l得倾斜角 为 45 度