x=1/x则x=±1
(x²-5/x-1+1)乘以x³-1/x²-2x除以(x+3)
=(x²-5/x)X(x³-1/x²-2x)÷(x+3)
=[(x^3-5)/x]X[(x^5-1-2x^3)/x^2]÷(x+3)
=(x^3-5)(x^5-2x^3-1)/[x^3(x+3)]
当x=1时
=(1-5)(1-2-1)/(1+3)
=(-4)(-2)/4
=2
当x=-1时
=(-1-5)(-1+2-1)/(-1)(-1+3)
=(-4)(0)/(-2)
=0
x=1/x则x=±1
(x²-5/x-1+1)乘以x³-1/x²-2x除以(x+3)
=(x²-5/x)X(x³-1/x²-2x)÷(x+3)
=[(x^3-5)/x]X[(x^5-1-2x^3)/x^2]÷(x+3)
=(x^3-5)(x^5-2x^3-1)/[x^3(x+3)]
当x=1时
=(1-5)(1-2-1)/(1+3)
=(-4)(-2)/4
=2
当x=-1时
=(-1-5)(-1+2-1)/(-1)(-1+3)
=(-4)(0)/(-2)
=0