设x=sint,则dx=costdt,t=arcsinx,cost=√(1-x²)
代入原式得,原式=∫sin²tcos²tdt
=1/4∫sin²(2t)dt
=1/8∫(1-cos(4t))dt
=1/8(t-sin(4t)/4)+C (C是积分常数)
=1/8(t-sintcost(cos²t-sin²t))+C
=1/8(arcsinx-x(1-2x²)√(1-x²))+C.
设x=sint,则dx=costdt,t=arcsinx,cost=√(1-x²)
代入原式得,原式=∫sin²tcos²tdt
=1/4∫sin²(2t)dt
=1/8∫(1-cos(4t))dt
=1/8(t-sin(4t)/4)+C (C是积分常数)
=1/8(t-sintcost(cos²t-sin²t))+C
=1/8(arcsinx-x(1-2x²)√(1-x²))+C.