f(x)=4cosx*sin(x+π/6)
=4cosx(sinx*√3/2+cosx*1/2)
=2√3sinxcosx+2(cosx)^2
=√3sin2x+cos2x+1
=2sin(2x+π/6)+1
f(x)的最小正周期 T =π
最大值为2+1=3
2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z.
kπ-π/3≤x≤kπ+π/6,k∈Z.
f(x)的单调递增区间是[kπ-π/3,kπ+π/6],k∈Z.
f(x)=4cosx*sin(x+π/6)
=4cosx(sinx*√3/2+cosx*1/2)
=2√3sinxcosx+2(cosx)^2
=√3sin2x+cos2x+1
=2sin(2x+π/6)+1
f(x)的最小正周期 T =π
最大值为2+1=3
2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z.
kπ-π/3≤x≤kπ+π/6,k∈Z.
f(x)的单调递增区间是[kπ-π/3,kπ+π/6],k∈Z.