∵CA = CP
∴∠CAP = ∠CPA= 30°
∴∠ACP =120°
∵∠ACB = 90°
∴∠BCP = 30°
∵CB = CP
∴∠CBP = ∠CPB = (180°-30°)/2 = 75°
∵∠CPA = 30°
∴∠APB = 75°-30°= 45°
∴在△APB中
∵∠ACB = 90°,AC=BC
∴∠CAB = 45°
∵∠BAP = 30°
∴∠PAB = 45°-30° = 15°
∴∠ABP = 180°-∠PAB - ∠APB = 180°-15°-45° = 120°