答:
e^x-e^y-sin(xy)=0
两边对x求导:
e^x -(e^y)y'-cos(xy)*(y+xy')=0
所以:
[xcos(xy)+e^y]*y'=e^x-ycos(xy)
所以:
dy/dx=y'= [e^x-ycos(xy) ] / [ xcos(xy)+e^y ]
答:
e^x-e^y-sin(xy)=0
两边对x求导:
e^x -(e^y)y'-cos(xy)*(y+xy')=0
所以:
[xcos(xy)+e^y]*y'=e^x-ycos(xy)
所以:
dy/dx=y'= [e^x-ycos(xy) ] / [ xcos(xy)+e^y ]