解题思路:根据A、B两点在x轴正半轴或负半轴,C点在y轴的坐标轴或负半轴,8种情况,设交点式求二次函数解析式.
①设A点在x轴负半轴,B点x轴正半轴,C点在y轴正半轴,
则A(-2,0),B(1,0),C(0,1),
设抛物线解析式y=a(x+2)(x-1),将C(0,1)代入,得a=-[1/2]
∴y=-[1/2](x+2)(x-1),即y=-[1/2]x2-[1/2]x+1;
②设A点在x轴负半轴,B点x轴正半轴,C点在y轴负半轴,
则A(-2,0),B(1,0),C(0,-1),
同理,得y=[1/2]x2+[1/2]x-1;
③设A点在x轴正半轴,B点x轴负半轴,C点在y轴正半轴,
则A(2,0),B(-1,0),C(0,1),
同理,得y=-[1/2]x2+[1/2]x+1;
④设A点在x轴正半轴,B点x轴负半轴,C点在y轴负半轴,
则A(2,0),B(-1,0),C(0,-1),
y=[1/2]x2-[1/2]x-1.
⑤设A点在x轴正半轴,B点x轴正半轴,C点在y轴正半轴,
则A(2,0),B(1,0),C(0,1),
设抛物线解析式y=a(x-2)(x-1),将C(0,1)代入,得a=[1/2]
∴y=[1/2](x-2)(x-1),即y=[1/2]x2-[3/2]x+1;
⑥设A点在x轴负半轴,B点x轴负半轴,C点在y轴正半轴,
则A(-2,0),B(-1,0),C(0,1),
同理,得y=[1/2]x2+[3/2]x+1;
⑦设A点在x轴负半轴,B点x轴负半轴,C点在y轴负半轴,
则A(-2,0),B(-1,0),C(0,-1),
同理,得y=-[1/2]x2-[3/2]x-1;
⑧设A点在x轴正半轴,B点x轴正半轴,C点在y轴负半轴,
则A(2,0),B(1,0),C(0,-1),
y=-[1/2]x2+[3/2]x-1.
点评:
本题考点: 待定系数法求二次函数解析式;抛物线与x轴的交点.
考点点评: 本题考查了用待定系数法求二次函数解析式的方法.关键是根据条件确定抛物线解析式的形式,再求其中的待定系数.一般式:y=ax2+bx+c(a≠0);顶点式y=a(x-h)2+k,其中顶点坐标为(h,k);交点式y=a(x-x1)(x-x2),抛物线与x轴两交点为(x1,0),(x2,0).