∵ DE‖AC
∴ ∠2 = ∠ADE
∵ ∠1 = ∠2
∴ ∠1 = ∠ADE
∴ △EAD为等腰三角形,AE=ED
∵ DE‖AC
∴ DE :AC = BE :AB
即AE :AC = BE :AB
∴ AE/AC + AE/AB = BE/AB + AE/AB = (AE+BE)/AB = 1
上式两端同除以AE得
1/AC + 1/AB = 1/AE
∵ DE‖AC
∴ ∠2 = ∠ADE
∵ ∠1 = ∠2
∴ ∠1 = ∠ADE
∴ △EAD为等腰三角形,AE=ED
∵ DE‖AC
∴ DE :AC = BE :AB
即AE :AC = BE :AB
∴ AE/AC + AE/AB = BE/AB + AE/AB = (AE+BE)/AB = 1
上式两端同除以AE得
1/AC + 1/AB = 1/AE