1.
设斜率k
则两条平行线方程:
y=kx ==> kx-y=0
y-3=k(x-1) ==> kx-y+(3-k)=0
根号5=|3-k|/(k^2+1)^(1/2)
5(k^2+1)=(3-k)^2
2k^2+3k-2=0
(2k-1)(k+2)=0
k=1/2或k=-2
所以,两条平行线方程:y=(1/2)x 和y=(1/2)x+(5/2)
或:y=-2x 和y=-2x+5
2.
已知平行线3x+2y-6=0
和6x+4y=0 ==> 3x+2y=0
与这两条平行线距离相等的点的轨迹:
3x+2y+[(-6+0)/2]=0
即:3x+2y-3=0