∵∠A+∠ABC+ACB=180°
∴∠ABC+∠ACB=180°-∠A
∵∠ABC+∠CBD=180°
∠ACB+∠BCE=180°
∴∠ABC+∠ACB+∠CBD+∠BCE=360°
即180°-∠A+∠CBD+∠BCE=360°
∴∠CBD+∠BCE=180°+∠A
∵∠CBD,∠BCE的平分线相交于点F
∴∠CBF+∠BCF=½﹙∠CBD+∠BCE﹚
=½×﹙180°+∠A﹚
∴∠BFC=180°-½×﹙180°+∠A﹚
=90°-½∠A
∵∠A+∠ABC+ACB=180°
∴∠ABC+∠ACB=180°-∠A
∵∠ABC+∠CBD=180°
∠ACB+∠BCE=180°
∴∠ABC+∠ACB+∠CBD+∠BCE=360°
即180°-∠A+∠CBD+∠BCE=360°
∴∠CBD+∠BCE=180°+∠A
∵∠CBD,∠BCE的平分线相交于点F
∴∠CBF+∠BCF=½﹙∠CBD+∠BCE﹚
=½×﹙180°+∠A﹚
∴∠BFC=180°-½×﹙180°+∠A﹚
=90°-½∠A