在△ABC中,设BC=a,AB=c,CA=b,若(b+a)/a=sinB/(sinB-sinA),cos2C+cosC=

2个回答

  • 直角三角形

    因为a/sinA=b/sinB=c/sinC

    所以

    (b+a)/a=sinB/(sinB-sinA)

    1+b/a=sinB/(sinB-sinA)

    1+sinB/sinA=sinB/(sinB-sinA)

    (sinA+sinB)/sinA=sinB/(sinB-sinA)

    sinAsinB=(sinB)^2-(sinA)^2.(1)

    cos2C+cosC=1-cos(A-B)

    cos2C=1+cos(A+B)-cos(A-B)

    cos2C=1-2sinAsinB

    因为(1)

    所以cos2C=1-2(sinB)^2+2(sinA)^2

    2(cosC)^2-1=1-2(sinB)^2+2(sinA)^2

    (cosC)^2=1-(sinB)^2+(sinA)^2

    1-(sinC)^2=1-(sinB)^2+(sinA)^2

    (sinB)^2=(sinC)^2+(sinA)^2 .(2)

    又由a/sinA=b/sinB=c/sinC得a^2/(sinA)^2=b^2/(sinB)^2=c^2/(sinC)^2

    b^2/(sinB)^2=(a^2+c^2)/[(sinA)^2+(sinC)^2]

    因为(2)所以b^2=a^2+c^2

    所以是直角三角形