第一步,n=1时,1 > 1/2 成立错误, 应该是1>0
求证:1+1/ √2+1/√3+…+1/ √n>2(√n-1)谢谢了,
2个回答
相关问题
-
求证1!+2*2!+3*3!+…+n*n!=(n+1)!-1
-
求证(n+1)(n+2)(n+3)……(n+n)=2^n*1*3*……*(2n-1)
-
求证:1+1/2+1/3+···+1/2^n>n+2/2 (n≥2)
-
求证(1-1/2^2)(1-1/3^2)...(1-1/n^2)=(n+1)/2n,
-
求证:1-1/2+1/3-1/4+...-1/2n=1/(n+1)+1/(n+2)+...+1/2n
-
求证1-1/2+1/3-1/4……+1/(2n-1)-1/2n=1/(n+1)+1/(n+2)+……1/2n
-
归纳法求证1^2/(1*3)+2^2/(3*5)+...+n^2/(2n-1)(2n+1)=n(n+1)/[2(2n+1
-
求证:[1/n+1]+[1/n+2]+…+[1/3n]>[5/6](n≥2,n∈N*).
-
f(n)=1+1/2+1/3+1/4...+1/n,求证f(2∧n)>n/2,n∈N+
-
求证:1*2+2*5+3*8+…+n(3n-1)=n^2(n+1)