解题思路:(1)本题的等量关系是:加工面条的利润=每天面条的产量×每千克面条的利润.由此可列出函数关系式;
(2)本题的等量关系是:剩余面粉的利润=(面粉的产量-生产面条用去的面粉的数量)×每千克面粉的利润.以此可得出函数关系式;
(3)可将(1)(2)的式子相加就是一天所获得的总利润,然后根据已知条件求出自变量的取值范围,根据得出的函数的性质和自变量的取值范围即可求出最大利润是多少.
(1)y1=400x×0.6=240x;
(2)y2=[(20-x)×600-400x]×0.2=2400-200x;
(3)由题意,可得:y=y1+y2=2400+40x,
由于0≤x≤20且600×(20-x)≥400x,因此0≤x≤12,
所以y最大=2400+40×12=2880元.
答:最大利润是2880元.
点评:
本题考点: 一次函数的应用.
考点点评: 一次函数的综合应用题常出现于销售、收费、行程等实际问题当中,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数式再求解.