由sin(5π/4+b)= -12/13得sin(π/4+b)= 12/13.
所以sin(a+b)=sin[(π/4+b)-(π/4-a)]
=sin(π/4+b)cos(π/4-a)]-cos(π/4+b)sin(π/4-a)
=12/13*3/5-(-5/13)*4/5=56/65.
由sin(5π/4+b)= -12/13得sin(π/4+b)= 12/13.
所以sin(a+b)=sin[(π/4+b)-(π/4-a)]
=sin(π/4+b)cos(π/4-a)]-cos(π/4+b)sin(π/4-a)
=12/13*3/5-(-5/13)*4/5=56/65.