设函数f(x)=xsinx+cosx(-3π<x<3π)

1个回答

  • (1)∵f(x)=xsinx+cosx

    ∴f′(x)=(xsinx+cosx)′=(xsinx)′+(cosx)′=x′sinx+x(sinx)′-sinx

    =sinx+xcosx-sinx=xcosx,

    当0≤x<3π时,由f′(x)=0,即xcosx=0,即x=0或cosx=0,解得x=0或x=[π/2],或x=[3π/2]或x=[5π/2]列表:

    x 0 (0,[π/2]) [π/2] ([π/2],[3π/2]) [3π/2] ([3π/2],[5π/2]) [5π/2] ([5π/2],3π) 3π

    f′(x) 0 + 0 - 0 + 0 -

    f(x) 1 递增 极大 递减 极小 递增 极大

    递减 则函数f(x)在0≤x<3π上的单调增区间为(0,[π/2]),([3π/2],[5π/2]),

    单调递减区间为([π/2],[3π/2]),([5π/2],3π),

    ∵f(-x)=xsinx+cosx=f(x),

    ∴f(x)是偶函数,

    则函数f(x)=xsinx+cosx(-3π<x<3π)的单调增区间为(0,[π/2]),([3π/2],[5π/2]),

    (-[3π/2],-[π/2]),(-3π,-[5π/2]),

    单调递减区间为(