证明:AC=AB,∠ACE=∠ABD,CE=BD
∴△ACE≌△ABD,
∴∠CAE=∠BAD=60°,AE=AD
∴△AED是等边三角形,∠AED=60°
所以∠EAB+∠AED=(∠BAD+∠CAE)+∠AED=(60°+60°)+60°=180°
所以DE//AB(同旁内角互补,两直线平行)
证明:AC=AB,∠ACE=∠ABD,CE=BD
∴△ACE≌△ABD,
∴∠CAE=∠BAD=60°,AE=AD
∴△AED是等边三角形,∠AED=60°
所以∠EAB+∠AED=(∠BAD+∠CAE)+∠AED=(60°+60°)+60°=180°
所以DE//AB(同旁内角互补,两直线平行)