0.25×19+0.75×27(96.5-96.5×0.24-0.24)÷73.11.25×67.875×+125×6.

1个回答

  • 解题思路:(1)把0.75看作0.25×3,运用乘法分配律简算;

    (2)括号内运用乘法分配律简算,进一步计算得出结果;

    (3)根据数字特点,原式变为1.25×67.875×+1.25×678.75×+1.25×5.3375,运用乘法分配律简算;

    (4)先算8.6+9.7=18.3,把0.92看作1-0.08,运用乘法分配律简算,这样把乘法变为加、减法,计算较简便;

    (5)运用高斯求和公式简算;

    (6)通过观察,发现5-3=(9-7)=…=(49-47)=2,因此把原式变为(5-3)+(9-7)+…+(49-47),计算即可.

    (1)0.25×19+0.75×27,

    =0.25×19+0.25×3×27,

    =0.25×19+0.25×81,

    =0.25×(19+81),

    =0.25×100,

    =25;

    (2)(96.5-96.5×0.24-0.24)÷73.1,

    =[96.5-(96.5+1)×0.24]÷73.1,

    =(96.5-97.5×0.24)÷73.1,

    =(96.5-23.4)÷73.1,

    =73.1÷73.1,

    =1;

    (3)1.25×67.875×+125×6.7875×+1250×0.053375,

    =1.25×67.875×+1.25×678.75×+1.25×53.375,

    =1.25×﹙67.875+678.75+53.375﹚,

    =1.25×800,

    =1000;

    (4)[20.026-(8.6+9.7)×0.92]÷3.19,

    =[20.026-(8.6+9.7)×0.92]÷3.19,

    =[20.026-18.3×0.92]÷3.19,

    =[20.026-16.836]÷3.19,

    =3.19÷3.19,

    =1;

    (5)1+2+3+4+…+1999,

    =(1+1999)×1999÷2,

    =2000×1999÷2,

    =1999000;

    (6)(5+9+13+…+49)-(3+7+11+…+47),

    =(5-3)+(9-7)+…+(49-47),

    =2+2+…+2,(12个2)

    =2×12,

    =24.

    点评:

    本题考点: 四则混合运算中的巧算.

    考点点评: 完成此题,应注意观察,认真分析式中数据,运用运算定律或运算技巧,灵活解答.