如需要构造一个f'(x)不在的函数
令a=0,f(x)定义如下
f(x)=sin(2nπx) / n x∈(n-1,n]
其中n=1,2,3.
当这个函数是趋于0的,这是因为,
在第个区间(n-1,n]的最大最小值分别为
-1/n,1/n.
而这个函数是可导的
f'(x)= 2πcos(2nπx) x∈(n-1,n]
(在x=n处,可以用左右导数来验证可导)
f'(x)在无穷处极限不会为0
因为f'(n) = 2π 是一个常数列
所以存在一个子列不为趋于0.
所以f'(x)极限不为0.
如需要构造一个f'(x)不在的函数
令a=0,f(x)定义如下
f(x)=sin(2nπx) / n x∈(n-1,n]
其中n=1,2,3.
当这个函数是趋于0的,这是因为,
在第个区间(n-1,n]的最大最小值分别为
-1/n,1/n.
而这个函数是可导的
f'(x)= 2πcos(2nπx) x∈(n-1,n]
(在x=n处,可以用左右导数来验证可导)
f'(x)在无穷处极限不会为0
因为f'(n) = 2π 是一个常数列
所以存在一个子列不为趋于0.
所以f'(x)极限不为0.