延长AD,交BC于点G.
已知,BE、CF交于点D,而且都是△ABC的高,
由三角形三条高交于一点,可得:AG也是△ABC的高,
即有:AG⊥BC.
DG是等腰△DBC底边上的高,可得:AG是BC的垂直平分线,
所以,AB = AC .
AG是等腰△ABC底边上的高,可得:AD平分∠BAC .
延长AD,交BC于点G.
已知,BE、CF交于点D,而且都是△ABC的高,
由三角形三条高交于一点,可得:AG也是△ABC的高,
即有:AG⊥BC.
DG是等腰△DBC底边上的高,可得:AG是BC的垂直平分线,
所以,AB = AC .
AG是等腰△ABC底边上的高,可得:AD平分∠BAC .