好难啊,而且你的图根本没标点.不过我还是证出来了.详细过程如下:
证明:连接BM,DM
∵B是AC中点,D是CE中点,M是AE中点.
∴BM//CE,BM=1/2CE=CD=DE
DM//AC,DM=1/2AC=AB=BC
∴∠ABM=∠ACE=∠EDM(∵直线平行哦)
∴∠MBC=∠MDC
又∵⊿FBC和⊿HDC是等腰直角三角形
∴∠FBC=∠HDC=Rt∠,
FB=BC=BM,DH=CD=BM
在⊿FBM和⊿MDH中,
FB=DM,BM=DH,∠FBM=∠MDH
∴⊿FBC≌⊿HDC
∴FM=HM ①
∠BFM=∠DMH
又∵∠DME=∠A
∠CBM=∠A+∠ABM
∴180°=∠AMB+∠DME+∠BMF+∠HMD+∠FMH
=∠AMB+∠A+∠BMF+∠BFM+∠FMH
=∠CBM+∠BMF+∠BFM+∠FMH
又∵∠CBM+∠BMF+∠BFM+90°=180°(三角形内角和)
∴∠FMH=90° ②
由①②得证,⊿FMH是等腰直角三角形.