解题思路:(1)首先把分式两边乘以最简公分母x(x-1)去分母,然后去括号,移项,合并同类项,解出x的值,最后一定要检验.
(2)根据作已知∠B=∠CBD,再截取CD=AB即可;
(3)根据3条直线最多可有 3,个交点;4条直线最多可有 6个交点.由此我们可以猜想:在同一平面内,6条直线最多可有 15个交点,得出规律求出即可.
(1)去分母得:2(x+1)-2=x(x+1),
去括号得:2x+2-2=x2+x,
移项得:2x-x-x2=0
合并同类项得:-x2+x=0,
分解因式得:x(1-x)=0,
∴x=0或1,
检验:把x=1,代入最简公分母x(x-1)=0,
把x=0,代入最简公分母x(x-1)=0,
所以x=0或1都不是原方程的解.
∴原分式方程的解为:无解.
(2)如图所示;
(3)根据3条直线最多可有3个交点;4条直线最多可有6个交点.
由此我们可以猜想:在同一平面内,6条直线最多可有 15个交点,
∴n(n为大于1的整数)条直线最多可有( 1+2+…+n)个交点,
∴1+2+…+n=
n(1+n)
2,
故答案为:3,6,15,
n(1+n)
2.
点评:
本题考点: 解分式方程;相交线;作图—复杂作图.
考点点评: 此题主要考查了分式方程的解法,以及直线交点求法,做题过程中关键是不要忘记检验,很多同学忘记检验,导致错误.