1.如图,在梯形ABCD中,AD‖BC,E是CD的中点,AE⊥BE,试判断AB,AD,BC的数量关系,并写出推理过程.

1个回答

  • 1 延长AE交BC的延长线于F

    易知⊿ADE≌⊿FCE

    ∠F + ∠EBF = 90度

    AE = FE

    FE²+BE² = BF²

    也就是

    AE²+BE² = AB²

    所以AB = BF = BC+CF=BC+AD

    2 和上题一样,延长AE交BC于F

    AB = AD+BC = FC+BC = BC

    所以⊿ABF是等腰三角形

    E是AF中点

    所以BE⊥AE (推理稍微简单了些,不过意思应该能看懂吧)

    3 PD = AD - t = 24 - t

    CQ = 3t

    当PD = CQ时,PQCD为平等四边形

    解得t = 6

    过D点作DH⊥BC于H

    HC = BC - AD = 26-24 = 2

    当CQ - PD = 2HC是PQCD为等腰T形

    3t - (24-t) = 2×2

    4t - 24=4

    t = 7