1 延长AE交BC的延长线于F
易知⊿ADE≌⊿FCE
∠F + ∠EBF = 90度
AE = FE
FE²+BE² = BF²
也就是
AE²+BE² = AB²
所以AB = BF = BC+CF=BC+AD
2 和上题一样,延长AE交BC于F
AB = AD+BC = FC+BC = BC
所以⊿ABF是等腰三角形
E是AF中点
所以BE⊥AE (推理稍微简单了些,不过意思应该能看懂吧)
3 PD = AD - t = 24 - t
CQ = 3t
当PD = CQ时,PQCD为平等四边形
解得t = 6
过D点作DH⊥BC于H
HC = BC - AD = 26-24 = 2
当CQ - PD = 2HC是PQCD为等腰T形
3t - (24-t) = 2×2
4t - 24=4
t = 7