证明:连接AD、BC
AB是直径,∴∠ADB=∠BCG=90(直径所对圆周角)
∠ADE=90-∠BDE
DE⊥AB,∠DBE=90-∠BDE
∴∠ADE=∠DBE
弧AD=弧DC,∴∠DAF=∠DBE(等弧所对圆周角)
∴∠DAF=∠ADE,AF=DF
∠BDE=90-∠DBA,∠CGB=90-∠CBG
∵∠DBA=∠CBG(等弧所对圆周角)∴∠CGB=∠BDE
又∵∠CGB=∠DGF,∴∠BDE=∠DGF
DF=FG
因此AF=FG
证明:连接AD、BC
AB是直径,∴∠ADB=∠BCG=90(直径所对圆周角)
∠ADE=90-∠BDE
DE⊥AB,∠DBE=90-∠BDE
∴∠ADE=∠DBE
弧AD=弧DC,∴∠DAF=∠DBE(等弧所对圆周角)
∴∠DAF=∠ADE,AF=DF
∠BDE=90-∠DBA,∠CGB=90-∠CBG
∵∠DBA=∠CBG(等弧所对圆周角)∴∠CGB=∠BDE
又∵∠CGB=∠DGF,∴∠BDE=∠DGF
DF=FG
因此AF=FG