设三阶对称矩阵A的特征值为1,-1,0而λ1和λ2的特征向量分别为(a,2a-1,1)^T,(a,1,1-3a)^T,求
1个回答
求什么?
因为实对称矩阵的属于不同特征值的特征向量正交
所以 a^2+(2a-1)+(1-3a) = 0
所以 a^2-a = 0
即 a(a-1)=0
所以 a=0 或 a=1.
相关问题
设三阶十对称矩阵A的特征值为λ1=-1,λ2=λ3=1,对应于λ1的特征向量为α1=(0,1,1)^T,求属于特征值
设3阶矩阵A的属于特征值λ1=1的特征向量是a1=(-1,1,1)T,属于特征值λ2=λ3的特征向量a2=(-1,1,0
求特征向量?A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,λ1=3的线性无关特征向量为(-1 0 1)^T
设3阶矩阵A有特征值λ1=-1,λ2=λ3=1,对应的特征向量分别为α1=(1,-1,1)T,α2=(1,0,-1)T,
设三阶矩阵A的特征值分别为λ1=-2,λ2=2,λ1,λ3=1,相应的特征向量分别为P1=(1,1,1)P2=(0,1,
线性代数:设三阶实对称矩阵A的特征值为λ1=-1,λ2=λ3=1,已知A的属于λ1=-1的特征向量为p1={0,1,1}
线性代数:设三阶实对称矩阵A的特征值为λ1=-1,λ2=λ3=1,已知A的属于λ1=-1的特征向量为p1={0,1,1}
已知三阶实对称矩阵A的三个特征值为λ1=2,λ2=λ3=1,且对应于λ2,λ3的特征向量为:α2=(1,1,-1)^T
线性代数 对称矩阵三阶对成矩阵A 的特征值 是λ1=1 λ2=2 λ3=3 λ1与λ2的 特征向量为 (-1,-1,1)
设a为三阶矩阵,有特征值λ1,λ2,λ3,其对应的特征向量分别是ξ1=[1,0,0],ξ2=[1,0,0]...