解题思路:先根据函数f(x+1)是偶函数,当x∈(1,+∞)时,函数f(x)单调递减,确定当x∈(-∞,1)时,函数f(x)单调递增,再结合函数的单调性,即可得到结论.
∵函数f(x+1)是偶函数,当x∈(1,+∞)时,函数f(x)单调递减,
∴当x∈(-∞,1)时,函数f(x)单调递增,
∵b=f(3)=f(-1),-1<-[1/2]<0<1
∴f(-1)<f(−
1
2)<f(0)
∴f(3)<f(−
1
2)<f(0)
∴b<a<c
故选A.
点评:
本题考点: 奇偶性与单调性的综合.
考点点评: 本题考查函数单调性与奇偶性的结合,考查学生分析解决问题的能力,确定当x∈(-∞,1)时,函数f(x)单调递增,是解题的关键.