三角形ABC中
sinC=h/a=(c-a)/a,sinA=h/c=(c-a)/c
所以,1/sinA-1/sinC=1
即,sinC-sinA=sinAsinC
即,2[cos(C+A)/2][sin(C-A)/2]
=-[cos(A+C)-cos(A-C)]/2
=-{2[cos²(A+C)/2]-1-1+2[sin²(A-C)/2]}/2
=-{[cos²(A+C)/2]-1+[sin²(A-C)/2]}
移项整理,得
{[cos(A+C)/2]+[sin(C-A)/2]}²=1
因为,0