连接AE、AF,取BC中点G,连接AG、FG
△ADE全等于△ABG (SAS) 所以∠DAE=∠BAG
△ABG相似于△GCF (SAS) 所以AG/GF=AB/CG
因为BG=CG 所以AG/AB=GF/CG=GF/GB
所以△FAG相似于△GAB (SAS)
所以∠FAG=∠GAB 因为∠DAE=∠BAG
所以∠DAE=1/2∠BAF
连接AE、AF,取BC中点G,连接AG、FG
△ADE全等于△ABG (SAS) 所以∠DAE=∠BAG
△ABG相似于△GCF (SAS) 所以AG/GF=AB/CG
因为BG=CG 所以AG/AB=GF/CG=GF/GB
所以△FAG相似于△GAB (SAS)
所以∠FAG=∠GAB 因为∠DAE=∠BAG
所以∠DAE=1/2∠BAF